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The present paper addresses the analysis of uncertainties in the framework of the nondestructive evaluation technique Lorentz
force eddy current testing. A generalized polynomial chaos expansion is used in order to quantify the impact of multiple unknown
input parameters. In this context, the velocity and the conductivity of the specimen as well as the magnetic remanence and the lift-off
distance of the permanent magnet are modelled as uniform distributed random variables. A comparison to experimental results
show good agreement to numerical predictions. A sensitivity analysis by means of a sobol decomposition revealed that the magnetic
remanence and the lift-off distance contribute to more than 80% to the total variance of the resulting Lorentz force profile.
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I. INTRODUCTION

THE analysis of uncertainties plays an important role
during the design process of new systems, especially

in the framework of nondestructive testing (NDT) [1], [2].
Lorentz force eddy current testing (LET) is an NDT technique
to evaluate electrically conductive materials. The general prin-
ciple is illustrated in Fig. 1. It is based on the induction of eddy
currents due to relative motion between a permanent magnet
and the object under test [3]. The resulting Lorentz force acting
on the magnet is measured and used to analyse the quality of
the specimen. By means of numerical simulations, it is possible
to predict the Lorentz force profile [4]. However, in this context
the intrinsic variability of the input parameters were yet not
accounted. Hence, one can not rely on a single deterministic
simulation and a quantification of uncertain model data on the
output is essential. As a result, it is possible to identify and
reduce prior sources of uncertainty in order to improve the
experimental setup.

v

σ,µ0

W

H

L

Fz

Fx

F

x

yz

σ,µ0

w

l

h

y

Br

Permanent
magnet

h

Fig. 1. The principle of LET. The red parameters are modelled as uniform
random variables and the blue values indicate the output quantities (adopted
from [5]).

II. METHODS

A. Numerical analysis
In the present framework, the velocity v, the electrical con-

ductivity σ, the lift-off distance h and the magnetic remanence
Br are modelled as uniform distributed random variables.
The associated limits are derived by our experimental setup
(Table I). The quantities of interest are the drag- and lift-
component of the Lorentz force Fi with i ∈ {x, z}. A non-
intrusive generalized polynomial chaos expansion (gPC) is
applied in order to investigate the propagation of uncertainties
throughout the system under investigation [6]. Therefore, the
magnetic convection diffusion equation is solved in its quasi-
static form assuming low to moderate magnetic Reynolds
numbers Rm = µ0σvW/2 ≤ 1:

∇×
(

1

µ0
∇×A−M

)
= σ (−∇ϕ+ v ×∇×A) (1)

∇ · [σ (−∇ϕ+ v ×∇×A)] = 0. (2)

The magnetic field is expressed by means of the magnetic
vector potential B = ∇×A using a Coulomb gauge ∇·A = 0
and the electric field is modelled with a scalar electric potential
formulation E = −∇ϕ+ v ×∇×A. The remanence of the
permanent magnet is included in the magnetization vector
M = Br/µ0 = B/µ0 −H. The Lorentz force on the magnet
F = −

∫
Ω
J×B dΩ is expressed by means of basis functions

ψk(ξ) which are build up by Legendre polynomials:

Fi(r, ξ) =

∞∑
k=0

û(k)(r)ψ(k)(ξ) ≈
Nc−1∑
k=0

û(k)(r)ψ(k)(ξ). (3)

The random variables are summarized in the vector ξ and the
argument r indicates the location of the magnet. Each position
between the magnet and the specimen is treated independently.
The regression method [7] is used to determine the coefficients
û(k)(r) of Nr different magnet positions constituted in the
matrix [U] of size [Nc ×Nr]:

[Ψ] [U] = [S], (4)

where [Ψ] denotes the gPC-matrix of size [Ng × Nc]. The
solutions are gathered in the [Ng × Nr] matrix [S] obtained
by Ng deterministic simulations. The number of forward



TABLE I
BOUNDS OF UNIFORM DISTRIBUTED RANDOM VARIABLES.

v in m/s σ in MS/m h in mm Br in T
[0.495...0.505] [30.35...30.97] [0.9...1.1] [1.195...1.235]

simulations depends on the resolution of the chosen grid in
the random space.

The Sobol coefficients quantify the influence of the individ-
ual random variables ξ on the total variance σ. They are deter-
mined by introducing a set Ai of multiindices α = (α1...αN ).
The set Ai1,...,iNs

contains all α pointing to an orthogonal
polynomial ψ(ξ) which depends on the variable(s) correspond-
ing to the respective Sobol coefficient S(σ)

i1,...,iNs
. Hence, the

Sobol coefficients are given by:

S
(σ)
i1,...,iNs

(r) =
1

σ2

∑
α∈Ai1,...,iNs

(
û(α)(r)

)2 +1∫
−1

(
ψ(α)(ξ)

)2
dξ.

(5)
The number of Sobol coefficients Ns depends on the number
of input random variables N and is Ns = 2N − 1 = 15.

B. Experimental setup

In the setup under investigation, a cylindrical permanent
magnet with a diameter of 15 mm and a height of 25 mm
is used. The specimen is made of stacked aluminium sheets
separated by thin paper sheets. It has a total dimension of
[L,W,H] = [250× 50× 50] mm. Each sheet has a thickness
of 2 mm. As an admissible approximation, an anisotropic
conductivity profile is assumed (σxx = σyy, σzz = 0). One of
the sheets contains a defect of size [l, w, h] = [12× 2× 2] mm
which is located in the lateral center of the specimen at a depth
of d = 2 mm. In the same way, the magnet is also located
in the lateral center such that the specimen is analysed in its
centerline. The remaining parameters are chosen such that they
correspond to the mean values given in Table I.

III. RESULTS

The gPC is performed at Nr = 11 relative positions between
the permanent magnet and the specimen. In the present case,
it was sufficient to expand the gPC until the order p = 3.
Considering a maximum order expansion, this yields together
with N = 4 random variables in Nc =

(
N+p
N

)
= 35 coeffi-

cients. The random space is sampled by a Gauss-Legendre
tensored grid of m = 3 points in every dimension (Ng = mN ),
which results in a total number of NrNg = 891 deterministic
quasi-static FEM simulations. Each calculation takes ∼ 10 s
leading to a total simulation time of about 2− 3 h. A typical
deterministic Lorentz force profile obtained with a single run
across the specimen with the corresponding mean values from
Table I is shown in Fig. 2. The plot shows the drag-force Fx
and the lift-force Fz obtained by numerical simulations and
experiments. The side-force Fy vanishes for symmetry reasons.
Moreover, the graph shows the resulting uncertainty intervals
µx,z ± 3σx,z obtained by the gPC. It can be observed that the
measurements are in the predicted range when uncertainties
of the defined input parameters are taken into account. The
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Fig. 2. Numerical simulations and experimental results of the Lorentz force
profile shown together with the associated uncertainty intervals µx,z ± 3σx,z .

Sobol coefficients are determined at each individual position
and averaged with respect to the x-position of the magnet. The
corresponding values for Fx and Fz are shown in Table II. It
is observed that the first four (linear) Sobol coefficients are
significant and cover 99.9% of the total variance.

TABLE II
AVERAGED LINEAR SOBOL COEFFICIENTS OF Fx AND Fz .

Sx in % SB Sh Sσ Sv

Fx /Fz 46.3 / 40.3 45.2 / 35.5 4.2 / 12.3 4.2 / 11.8

IV. CONCLUSION

The present study shows that the analysis of uncertainties by
means of gPC based methods can be readily used for extended
experimental validations in the framework of LET. A Sobol
decomposition revealed that the magnetic remanence and the
lift-off distance have the greatest influence. Hence, in order to
reduce the variance of the resulting Lorentz force, it is desirable
to reduce the uncertainty of these parameters first.
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